A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors
نویسندگان
چکیده
Defense against pathogens in multicellular eukaryotes depends on intracellular immune receptors, yet surveillance by these receptors is poorly understood. Several plant nucleotide-binding, leucine-rich repeat (NB-LRR) immune receptors carry fusions with other protein domains. The Arabidopsis RRS1-R NB-LRR protein carries a C-terminal WRKY DNA binding domain and forms a receptor complex with RPS4, another NB-LRR protein. This complex detects the bacterial effectors AvrRps4 or PopP2 and then activates defense. Both bacterial proteins interact with the RRS1 WRKY domain, and PopP2 acetylates lysines to block DNA binding. PopP2 and AvrRps4 interact with other WRKY domain-containing proteins, suggesting these effectors interfere with WRKY transcription factor-dependent defense, and RPS4/RRS1 has integrated a "decoy" domain that enables detection of effectors that target WRKY proteins. We propose that NB-LRR receptor pairs, one member of which carries an additional protein domain, enable perception of pathogen effectors whose function is to target that domain.
منابع مشابه
Plant immune receptors mimic pathogen virulence targets
All multicellular eukaryotes are susceptible to pathogens. Animal hosts have developed cell-autonomous innate immunity, and chordates have additionally evolved an adaptive immune system to defend against pathogen invasion. In contrast, plant immunity is entirely innate, and relies on the ability of individual cells to activate defense upon pathogen detection by either cell surface or cytoplasmi...
متن کاملNuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses.
Plant immune responses are triggered by pattern recognition receptors that detect conserved pathogen-associated molecular patterns (PAMPs) or by resistance (R) proteins recognizing isolate-specific pathogen effectors. We show that in barley, intracellular mildew A (MLA) R proteins function in the nucleus to confer resistance against the powdery mildew fungus. Recognition of the fungal avirulenc...
متن کاملPlant immune receptor decoy: Pathogens in their own trap
Microbial pathogens have evolved sophisticated strategies to infect their hosts, often resulting in disease. The host, in turn, can produce novel proteins (receptors or antibodies) that recognize pathogen molecules to trigger defense. Unlike animals, plants do not possess any adaptive immunity to defend themselves against pathogens. Therefore, they rely entirely on their genetic resistance capa...
متن کاملNuclear components and dynamics during plant innate immunity
In plants, efficient immune responses against microbial infection depend on the ability to rapidly couple pathogen recognition to downstream signaling responses. In this context, plant immunity requires highly dynamic responses that involve multiple organelles during the recognition and signaling events associated with defense. Nuclear dynamics play a critical role in plant immunity based on th...
متن کاملWRKY Transcription Factors Phosphorylated by MAPK Regulate a Plant Immune NADPH Oxidase in Nicotiana benthamiana.
Pathogen attack sequentially confers pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) after sensing of pathogen patterns and effectors by plant immune receptors, respectively. Reactive oxygen species (ROS) play pivotal roles in PTI and ETI as signaling molecules. Nicotiana benthamiana RBOHB, an NADPH oxidase, is responsible for both the transient PTI ROS burst and the robu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 161 شماره
صفحات -
تاریخ انتشار 2015